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For most of linear time-varying (LTV) systems, it is difficult t o  design time-varying 

controllers in analytic way. Accordingly, by approximating LTV systems as uncertain linear 

time invariant, control design approaches such as robust control have been applied to the 

resulting uncertain LTI systems. In particular, a robust control method such as quantitative 

feedback theory (QFT) has an advantage of guaranteeing the frozen-time stability and the 

pertbrmance specification against plant parameter uncertainties. However, if these methods are 

applied to the approximated linear t ime-invariant (LTI) plants with large uncertainty, the 

resulting control law becomes complicated and also may not become ineffective with faster 

dynamic behavior. In this paper, as a method to enhance the fast dynamic performance of LTV 

systems with bounded time-varying parameters, the approximated uncertainty of time varying 

parameters are reduced by the proposed QFT parameter-scheduling control design based on 

radial basis function (RBF) networks. 

Key Words :QFT(Quant i ta t ive  Feedback Theory), Linear Time-Varying System, Parameter 

Scheduling, RBF (Radial Basis Function) Network 

1. Introduction 

There are many analysis and control methodo- 

logies for linear time-varying (LTV) systems 

based on the analytic solutions (Choi et al. 1999, 

2001). However, generally, it is not easy to obtain 

the analytic solutions for LTV systems. Thus, to 

design controllers for LTV systems, robust con- 

trol for uncertain linear time-invariant (LTI) 

systems have been used by approximating LTV 

systems as uncertain LTI systems. However, when 

the range of time-varying parameters becomes 
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larger, these methods are not sufficient to reflect 

the fast dynamics of the original time-varying 

systems such as missiles and supersonic aircrafts. 

Thus, in this paper, the large uncertainties are 

divided into finite number of LTI sub-models 

with smaller uncertainties. Then, the finite num- 

ber of control parameter designed by quantitative 

feedback theory (QFT) design will cover rela- 

tively small varying portion of time-varying para- 

meters i n  each scheduling interval, where the 

parameter-scheduling control will guarantee the 

stability and the performance specifications in 

frozen time sense. Then, to schedule the designed 

control parameters, radial basis functions (RBF) 

neural networks are used. Nowadays, neural 

networks play a key role in many control design 

areas (Shin et al. 2000). 

The designed QFT control parameters are used 

in the training of the RBF network. The proposed 
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design method is applicable not only to nominal 

LTV systems but also to LTV systems with 

bounded t ime-invariant  uncertainties. 

This paper is organized as follows : In section 

2, QFT and RBF network are overviewed briefly. 

Then, QFT parameter-scheduling control design 

for LTV systems is proposed in section 3. The 

proposed design method is illustrated by a nu- 

merical example in section 4, and conclusions 

with some future works are commented in section 
5. 

2. P r e l i m i n a r i e s  

2.1 QFT overview 
QFT (Horowitz 1963, 1991; Houpis et al. 

1994) is a frequency domain control design pro- 

posed by Isaac Horowitz. It is a design technique 

utilizing the Nichols chart (NC) to achieve a 

desired stability and performance tolerance over 

the specified region of plant parameter uncertain- 
ties (Chait 1991). 

As depicted in Fig. 1, QFT control systems use 

2 DOF control design including a prefilter F(s) 
and a compensator G(s), where P(s) denotes an 

uncertain plant in a plant set P. In QFT control 

system, G(s) and F(s) are designed to achieve 

the robustness against parameter uncertainties 

and the desired tracking performance, respective- 

ly. Robust stability and tracking pertbrmance for 

c losed- loop SISO plant are given by 

P(joa) G(jw) < a// PEp, coE[0, oo] (1) 
l + P(j~o) G(jco) -7" 

P(jw) G(jw)F(jw) < Tu(w),  
TL(w) I+P(jw) G(jw) (2) 

all P~p,  w~ [0, co] 

where 7, TL and Tu denote the robust stability 

margin, lower and upper tracking performance 

bound, respectively. For  an optimal design, the 
cost of feedback L(s) = P ( s ) G  (s) must be mini- 

Fig. I A 2 DOF configuration of QFT control sys- 
tem 
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mized, where the high-frequency gain of open 

loop transmission function. 

Based on Eqs. (I) and (2), the specified para- 

meter uncertainties need to be transformed into 

NC(Nichols  Chart) templates and all the given 

specifications into NC bounds in the design pro- 

cess for QFT design. Then, a control design can 

be found by loop-shaping (Horowitz 1992; 

Borghesani et al. 1994; Lin 1994; Halikias and 

Bryant 1995) to satisfy the specifications. In this 

paper, we design finite number of control systems 

by adopting general QFT design. The details of 

QFT design can be found in references (Horowitz 

1963, 1991 ; Houpis et al. 1994). 

2.2 RBF networks overview 
An RBF network (Haykin 1994, Demuth and 

Beale et al. 1997 ; Jang et al. 1997) is composed of 

radial basis functions representing the locally 

receptive field units. The schematic diagram of 

2-input and l -output  RBF network with four 

radial basis functions is depicted in Fig. 2. 

The basis function of  RBF network is given by 

ri(x)=r,( l lx-u,  ID ( i = 1 ,  2, ..., n) (3) 

where x is an input vector, ui a center of i - th 

receptive field with the same dimension as x, n 

the number of radial basis functions, and r i ( . )  

the i - th radial basis function with a single 

maximum at the origin. As depicted in Fig. 2, 

there are no weights connecting the input and 

the hidden layer. In general, r~(-) is a gaussian 

function 

() Output 

q ~ ' ~ c  4 

Fig. 2 An RBF network with four radial basis 
functions 
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IIx • Ui•l 2 / 

ri (x) =exp / 20.2 ) (4) 

The output of RBF network can be formed in two 

ways. The simpler case is the weighted sum of 

each basis function output 

O ( X )  =~,,n=lCiJ~i ( X )  ( 5 )  

where c~ is the connection weight between the 

output and the i-th basis function. The other case 

is the weighted average of each basis function 

output 

Y .L . cm  (x) 
O(x) -- (6) 

ZT:, ri (x) 

For the training of RBF networks, the following 

gradient-descent method is used to minimize the 

error function 

m m 1 2 1 E =~-5-] (e~) =~5-2. ( d j -  O (x~)) 2 
Z, j = l  .L" j = l  

1 m n ) z  
=2j~_l( dJ-i~_iciri(xJ) / (7) 

where m denotes the number of training patterns, 

n denotes the number of radial basis functions, xj 

denotes the j - th  input pattern, and dj denotes the 

j - th  target pattern. In Eq. (7), ci and ui are the 

parameters to be trained. The gradient-descent 

learning equations for these parameters are 

3E (n) m 
-- Xe j (n)  ri(llx~-u,(n)[I) 

(8) 
OE(n) 

c i ( n + l )  = c i ( n ) - - r / 1  Oct(n)" i=l ,  2, ..-, n 

m 
3E ( n) = 2ci( n) ~e~( n) rj (llx,- u~( n) ll) 
0u,.(n) = 

(9) 
3E (n) 

u i ( n + l )  = u i ( n ) - r / 2  o3ui(n ) , i=1,  2, ..., n 

where e~ denotes the propagation error tbr the 

j - th  training pattern in Eq. (7), z/a the learning 

rate of parameters c~, and r]2 the learning rate of 

parameters u;. In this paper, RBF network is 

adopted to generate continuous QFT parameter- 

scheduling functions. 
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3. QFT Parameter-Scheduling 
Control Design for LTV Systems 

3.1  G e n e r a l i z a t i o n  o f  s c h e d u l i n g  e r r o r s  a n d  

u n c e r t a i n t i e s  

Time-varying systems considered as nominal 

plants in this paper are given by 

Jc(t) = A  (t) x ( t )  + B (  t) u ( t )  
(lO) 

y( t )  =C( t )  x( t )  + D(t) u(t)  

Assume that all the time-varying system para- 

meters in (10) and their derivatives are continu- 

ous and bounded as 

(ai~),~n<ai~(t) < (aij) rex, (b~j)m~<b~j(t) < (b~j)m~x 
(c,j)m~<cu(t) < (c,j) m~, (d,j)m,,<du(t) < (di~) m~ 
(h,~).~,<a,j(/) < (~,~)m,x, (b,~),~,<b,~(t) < (~)mx (I 1) 

({,~).~.< e,~(t) < (~,j)m=, (~)=..< do(t) < (d,j) m,~ 

where au(t ) ,  bi j ( t ) ,  cu(t) and du(t)  are the 

time-varying elements o f A ( t ) ,  B ( t ) ,  C ( t ) ,  and 

D(t ) ,  respectively. In Fig. 3, an arbitrary time 

varying parameter v(t)  is depicted by a solid 

line, where v(t)  satisfies V~n<--v(t)~Vmax and 

tSmln--< ~ (t) --< Vmax. LTV system parameters in Eq. 

( l l )  can be considered in the same way. If the 

parameter-scheduling interval is given by T =  

0.5, nominal values of v( t )  in each scheduling 

interval can be chosen as v(t)--* v , = v ( k × T )  
(k=0 ,  l, 2, " ' ) .  For the first scheduling interval, 

0 .25<t<0 .75 ,  the upper and lower part of sche- 

duling errors of vl is positive values ~vlu and 

8v~t, respectively. The scheduling error is the 

deviation from the nominal parameter value men- 

tioned above. In each time interval, the time- 

! ii * 

o5 ] 5, 2~, 3 35 4 

Fig. 3 Scheduling errors of a time-varying para- 
meter (× : g~, k=0, 1, 2, -..) 
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,:,  R~ 

VJc- 

Fig. 4 

Txk  
r l  

T 

Vlc )max /'4 

, > 
i t 

Scheduling error in the k-th time interval 

varying property of a system parameter can be 

regarded as small deviation. 

In Fig. 4, scheduling errors of are considered in 

detail. 

In this figure, a maximum scheduling error of 

the k- th  time interval is defined as 

(3Vk)max= T X  (Uh) max 

where (3~k)max=max[l#(t)I] ,  ( ( k - 0 . 5 )  T<<-t<- 
(k+0.5)  T) ,  and r ~ ( k = l ,  2, ...) is defined as an 

uncertainty range satisfying rk-> (c~v~)max. In this 

paper, rh has the form as Yk=~/((3Yk) max)Z-[-1. 

AS depicted in Fig. 3, the values of (c~Vh) max 

and rh are varying with time. Thus, for a time- 

independent design, the generalized value of 

(~Uk) max and rk are necessary. Using the maxi- 

mum gradient of the parameter, time-independent 

scheduling error E ,  is defined as 

E ~ = T X m a x [ l ( O ) m a x l ,  I(V)max I], (12) 

and Ro, the generalized value of rk, is defined as 

Rv = max [rk] 
k (13) 

= T [ I  4-{ max[] (/J) rain l, I (ZT)max I]}Z]½ 

Thus, for an arbitrary v( t )  and in any time 

interval, Ev and Rv can be used as a generalized 

scheduling error and uncertainty range, respec- 

tively. 

3.2 LTV systems approximation using finite 

number of uncertain LTI sub-models 

In this section, the approximation of LTV sys- 

tems is presented using finite number of uncertain 
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Fig. 5 

E~ E~ ' ' 
(~)~, (w)~ 

Approximation of a LTV system with two 
time-varying parameters 

LTI sub-models. The parameter uncertainty of 

the LTI sub-model is given by Eq. (13). By 

applying scheduling time interval, the system 

matrix A(t)  in Eq. (10) can be represented as 

A ( t ) - - . A ~ = A ( k x T )  (k= l ,  2,. . .) ,  

and B(t) ,  C(t), and D(t) can be represented in 

the same manner. Then, taking Laplace transfor- 

mation, the nominal system in k-th time interval 

can be described by the transfer matrix 

Ph (s) = Ck [ s I -  AkJ - lBk  + Dh. 

For example, in the case of SISO plant or an 

element of Pk(s) ,  general n- th  order transfer 

function becomes 

(b,) ksm+ (b,-l) k:-~ + " +  ( bo) ~ 
pk(s) = (m<n). (14) 

s"+ (an-l) ~:-~+'" + (ao) 

Since the frequency domain parameters (an-l)k, 

• ", (ao)~ and (bin)k, "", (bo) k are determined by 

the time domain parameters in Ak,  Bk, Ck, and 

Dk, their uncertainty bounds have the same rela- 

tion. Thus, if the finite number of uncertain LTI 

sub-models can cover the variation of original 

model in the time domain, the sub-models are 

also able to cover the original model in the 

frequency domain. The method of selection of 

finite number of LTI sub-systems to approximate 

a LTV system is shown in Fig. 5. In this figure, 

the LTV system has two time-varying parameters 
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v2(( 

- t .2  - 0 6  0 0 6 

v,(0 

Fig. 6 Approximation of a LTV system with peri- 
odically varying parameters 

1.2 

Vl (t) and V2 (t) .  

The parameter varying range of LTV system is 

depicted by the area filled with gray color, and 

the selected LTI sub-systems s~( n i =  l, 2, ..., N)  
are depicted with ' '. Each dashed-box represents 

the uncertainty region that should be covered by 

the sub-system located at the center. To determine 

the number and the nominal parameter values of 

LTI sub-models, the parameter varying range is 

divided by E~, and Evv In this manner, the wider 

range of varying parameters of the LTV system 

can be covered by the finite number of sub- 

systems having smaller region of uncertainty in 

the frozen time sense. The number of the selected 

sub-systems is determined as 

where q denotes the number of time varying sys- 

tem parameter ( q = 2  in case of Fig. 5), vp the 

p-th time-varying parameter of the system, By,, 
the generalized scheduling error of vm and 

(Vp) max(min) the maximum (minimum) value of vo. 

If the parameters are periodically varying, N will 

be a smaller value. For example, the approxima- 

tion of LTV systems with periodically varying 

parameters va( t )=sin  t and v z ( t ) = ( s i n ( 3 t ) +  

cos t ) /2  is considered in Fig. 6. 

3.3 Q F T  p a r a m e t e r - s c h e d u l i n g  funct ion 

generat ion  using R B F  network  

In this section, the QFT control design is 
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considered for the selected sub-models and the 

QFT parameter-scheduling function generation. 

As mentioned in the previous sections, Rv is used 

as an uncertainty size of parameter v ( t ) .  Then, 

the uncertainty of v( t )  for the ni - th  sub model 

is 

Rv <AVni<  Rv ( h i = l ,  N) (16) 
2 - - 2 " "  

For LTV systems with t ime-invariant parameter 

uncertainty, there is a need to modify the uncer- 

tainty size. The state equation of uncertain LTV 

system is as follows: 

2(t) = (A(t) +AA)x(t) + (B(t) +AB)u(t) 

y(t) = (C(t) +AC)x(t) + (D(t) +AD)u(t) 
(17) 

(Aa,i) m~, <Aa~-< (Aa~)max, (Ab~)mln-<Ab~i< (A b~)m,x 

(ac~) m~n-<Aci~-< (Acij) .... (Ad,~) rain--< Adij- < (Ad,~) max 

For the time-varying parameter v (t) with uncer- 

tainty (AV)~n<--AV<-(AV)max, the uncertainty 

specification for QFT design can be modified as 

Rv (Av) ~ <-Av,i <- ~ +  (Av) 2 max (18) 

( n i = l , - ' - ,  N) 

For each sub-model, pre-filter transfer matrices 

F (s) ni and compensator transfer matrices G (s) ~i 

can be designed to satisfy the frozen time stability 

and performance specifications by adopting QFT 

control design. In this paper, it is assumed that all 

the elements of F ( s ) , i  and G(s)~i can have the 

same structure. The controllers for these struc- 

tures can be designed by automatic loop-shaping 

methods based on the evolutionary algorithm 

(Chen et al. 1999; Gu et al. 1999), the optimal 

loop-shaping (Halikias and Bryant 1995), and so 

on. In this paper, RBF networks are adopted for 

the generation of a scheduling function. The struc- 

ture of the neural network used in this work is 

presented in Fig. 7. The whole network is com- 

posed of multi input-single output RBF sub- 

networks. The number of sub-network is the 

same as QFT parameters. Each RBF sub-network 

is trained to learn the relation among all the plant 

parameters and each one of QFT control para- 

meters, and these RBF sub-networks are com- 

bined in parallel form. To train the parameter 

relation into RBF network by gradient descent 



QFT Parameter-Scheduling Control Ddesign for Linear Time- Varying Systems Based on RBF Networks 489 

training, the nominal values of time-varying para- 

meter sets are used as input patterns and the 

corresponding control parameter sets are used as 

target patterns. 

Thus, the number of selected sub-model and 

the training patterns are the same. The input and 

target patterns of the k- th  ( k = l ,  2, ..-, n) RBF 

network is 

x~=v~=[v~  "" Vm~] 
ds=q~k ( j=  I, "' ,  N) 

where vj is the parameter vector of the j - th  

selected sub-model, m the number of time 

-varying parameters of the plant, N the  number of 

sub-models, and q~h the k- th  QFT parameter for 

the j - t h  selected sub-model. For the k-th RBF 

network, the center u~ and the connection weight 

c~ of the basis function rs can be initialized as 

follows : 

u~=v~+Aj=[v~+eu "'" v.o+e.~] 
c~=q~k+e~ (j=l,  ..., N) 

where eu ( i =  1, "-, m) and st are relatively small 

random values to perturb the initialization values. 

Control Sys. Control Sy~. Control Sys. Control Sys. Param. i 

P l a n t  P l a n t  P ~ ' a m .  Plar~t  [~i t,~ ] - v 
Patam. 1 2 , - .  ( f re t )  Pararn. m Plant Pa/am. 

(a) (b) 

Fig. 7 RBF network structures of the parameter 
scheduler 

Fig. 8 Block diagram of QFT parameter-scheduling 
control system 
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Using properly trained RBF networks as a 

scheduler, the whole QFT parameter-scheduling 

control system can be constructed as Fig. 8. 

4. A N u m e r i c a l  E x a m p l e  

In this section, the proposed parameter sche- 

duling control design is illustrated by a numerical 

example. A time-varying mass-spring-damper 

(MSD) model depicted in Fig. 9. 

The dynamic equation of the MSD model is 

given by 

c(t) +~n(t) I k(t) x(t) ~:(t) ~ (t) 
m(t) m(t) + m(t) u 

=-4x(t) -a ( t )2 ( t )  +a(t) K(t) u(t) 

where the time-varying parameters a(t)  and K 

(t) are given by 

a(t)  = 5  sin l + 8 ( 3 < a ( t )  <13) 

K ( t )  = 5  cos t + 8  (3_<K(t) < 13) 

In the above model equation, time-varying MSD 

model is similar in forms to general LTI SISO 

2nd order model except that the parameters are 

time-varying. Thus, we can use this model as a 

general LTV SISO 2nd order model to apply the 

proposed control design scheme. 

If the parameter-scheduling interval is set as 

T = 0 . 4  sec, the generalized scheduling error and 

uncertainty can be determined as E a = E ~ = I ,  
Ra = g k  ~ 1. Then, using Ea and E~, the nominal 

plant parameter sets can be constructed as ani~ 
{3, 5, 7, 9, 11, 13} and km~{ 3, 5, 7, 9, 11, 13}. 

Since all the given time-varying parameters are 

periodic functions, the number N of LTI sub- 

models can be smaller than that of Eq. (15). 

Thus, the uncertainty bounds of each sub-model 

for QFT design are given as 

- 1 < A m j <  1 

- l < A k u < l  ( n i = 1 , . . . , 2 0 )  

x(t) 
Fig. 9 Time-varying MSD model 
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O5o~ ~ ~ / , . ~ i ~ '  .... . . . .  ' 14 

2 2 

Fig. 10 Mapping result of parameter bFz 

,2.[ % . . . . . . . . . . . . . . .  
! i ! 

°" t ! :  - .. . . . . . . . . .  := . . . . . . . . .  i . . . . . . . .  i . . . . . . . . . . . . . . . . . .  i . . . . . . . . . . . . . . . . . .  
{. : 
| ~!  ............................................................... = .......... : .......... ¥ u; ; : : '. ', , , 

o, ....... ~- ........ ~ .......... i ........ ; ....... ! ........ Z ....... " ......... 

T~I(smt) 

Fig. 11 Step input response 

and the ni- th  selected sub-model has a form as 

(kni+Ak) (ani+Aa) 
s , i (s)--  sZ + ( a n i + A a ) s + 4  ( n i = l ,  2,---, 20) 

Then, the structure of the pre-filter and com- 

pensator transfer functions are formed as 

bFzS2 + bFls + bFo 
Fni(s) = 

s 3 4- ares z 4- aFlS 4- aro 

Gni(s)  = bGls+bGo 
S24- aclS 4- aco 

With parameter values { aFz, arl ay0, bv2, bFl, bF0, 

act, aco, bob boo}n, ( n i = l ,  2, ..-, 20), QFT 

control design can be performed for the ni- th  

selected sub-models. The plant parameter set, a 

and k, of a sub-model is used as an input pattern 

v ~ ( j : l ,  2, "", 20), and the designed QFT para- 

meter set is used as a corresponding output pat- 

tern d~. In Fig. 10, the parameter mapping among 

bp2 and two time-varying plant parameters is 

depicted. 
Simulations results are depicted in Figs. I I and 
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___i 

Sinusoidal input response 

12. In the case of the step input, the two responses 

are shown to have similar tracking performances. 

However, for a sinusoidal input, QFT parameter- 

scheduling control shows more improved tracking 

performance than the existing QFT control. 

5. Conclusions 

In this paper, we propose a method, QFT 

parameter-scheduling control, to design the con- 

trol system of LTV systems. The design pro- 

cedures are illustrated by a numerical example. 

The proposed design method combine QFT con- 

troller and RBF neural networks to enhance the 

controlled performance of LTV systems. In the 

design procedure, QFT control design specifica- 

tions are derived for LTV systems, and the res- 

ulting QFT control parameters are mapped into 

the RBF networks to construct control parameter 

scheduling system. 

The proposed method can be applied to LTV 

systems with time-invariant parameter uncertain- 

ties. The simulation results of time-varying MSD 

model show that the QF T parameter-scheduling 

control makes the controlled performance improv- 

ed for systems with faster dynamics and highly 

time-varying command inputs. 

The following two points can be pursued as 

future works. One is to adopt an on-l ine learning 

RBF network since it can eliminate some trial and 

error procedure in the off-line learning neural 

network. The other is the stability analysis of the 

whole control system including neural network, 

which may require the extension of stability analy- 

sis method for neural network control systems 
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and hybrid system. 
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